
Mercuna Ground Navigation
Unreal Engine User Guide

v2.5

Contents
Installing

Configuring Agent Types for navigation
Agent Categories

Configuring the Navigation Grid
Setting up the navigable space

Nav Seeds
Exclusion Volumes
Building the Nav Grid
Memory usage and Performance
Multiple levels

Generating Nav Grids in Multiple Levels
World Partition (UE5 only) - experimental

Building
Load Complete Event
Runtime Grid Building

On Demand Grid Building
Spawning Nav Grid at Runtime

Runtime Grid Rebuild
Physical Materials
Physical Materials on Landscapes
Nav Invokers

Registering an invoker
Runtime Rebuilds
Invoker Volumes

Pathfinding
Nav Grid Testing Actor
Navigation Cost Multipliers

Creating a Mercuna navigated Agent
Navigation Component

Example for a wheeled vehicle
Example for a slowly turning animal (e.g. a horse)
Example for a humanoid Character

Obstacle Component

Modifier Volumes
Usage flags
Costs
Using Modifier Volumes

Defining usage types
Creating modifier volumes
Configuring modifier volumes
Configuring navigation components
Runtime changes

Restrictions

Nav Links
Nav Link Creation
Configuring the Nav Link

Cost
Usage Types
Agent Types and Nav Grids

Steering

Avoidance

Blueprint Functionality

EQS

Debugging Problems
Logging
Profiling
Debug Actor
Debug Draw
Navigation Grid

Debug Draw
Exporting the grid

Migration Issues
v2.5
v2.4

Known Issues

Installing
The Mercuna middleware is integrated into Unreal Engine as a standard plugin compatible
with Unreal Engine 4.25 or later, or Unreal Engine 5.0.1.

● Binary evaluation UE5 - The binary evaluation version of Mercuna must be installed
as an Engine plugin - unzip the archive and copy the Mercuna directory to the
Plugins/Marketplace directory (you may need to create the Marketplace

subdirectory) within your Unreal Engine 5 install, e.g.
UnrealEngineDir/Engine/Plugins/Marketplace/Mercuna.

● Binary evaluation UE4 - The binary evaluation version of Mercuna must be installed
as an Engine plugin - unzip the archive and copy the Mercuna directory to the
Plugins directory within your Unreal Engine 4 install, e.g.
UnrealEngineDir/Engine/Plugins/Mercuna.

● Source version UE4 and UE5 - For source versions of Mercuna, it can be used
either as a Game plugin or, if you are building the engine from source, as an Engine
plugin. Simply copy the Mercuna directory into the Plugins directory in your
Game/Engine folder.

If you have also licensed Mercuna 3D Navigation, then the plugin will provide both ground
and 3D navigation capability. See the Mercuna 3D Navigation User Guide for documentation
of the 3D Navigation capabilities.

Once installed, the Mercuna components, actors and menu will automatically be available
when you next start the editor.

Configuring Agent Types for navigation
Mercuna Ground Navigation enables path finding and following for pre-configured agent
types. There is no restriction on the number of agent types. The properties of these agent
types must be set up on a per-project basis. In the UE4 editor, under Edit | Project
Settings… | Plugins | Mercuna you will find Ground Agent Types. These specify the
parameters for the different kinds of agents that will navigate using Mercuna Ground
navigation.

Configurable Agent Type properties

The properties of these agent types change the generation of the Nav Grid (see later) which
marks the areas of the geometry over which your agent may travel. These parameters are:

● Category [Character/Animal/Vehicle] - The category of the agent. This determines
the kind of paths the agent can follow and how it can move, more detail below.

● Shape [Circle/Rectangle] - The projected 2D shape of your agent, usually a circle
for characters or a rectangle for animals and vehicles.

● Pawn width - How wide your pawn is (and hence how narrow a route you can path
down). If the agent’s shape is Circle, this gives the diameter of the agent.

● Pawn length - How long your pawn is (e.g. which destinations could your vehicle fit
in lengthwise). If the agent’s shape is Circle then this will automatically be set equal
to the Pawn width.

● Step height - The height of the biggest step that an agent can step up or step down.
This allows agents to go up stairs or make other steps between navigable surfaces
that are at different heights.

● Height clearance - The height of your agent (i.e. the lowest tunnel your pawn can
path through).

● Max Slope Angle - The maximum incline your pawn can ascend/descend (in
degrees).

● Max Angle Change - The maximum slope angle between adjacent cells that should
be considered navigable (reducing this prevents paths going over sharp peaks or
troughs).

● Ledge Margin Fraction - Distance to remain from ledges/precipices, expressed as a
fraction of the half-width (for circular agents only). Reducing this allows characters to
get closer to a ledge than they can to a wall.

● Navigable Materials - Physical materials that the agent is allowed to navigate on. If
any materials are specified here then the agent can only navigate on those materials
and no others. If no materials are specified here then the agent can navigate on any
material except unnavigable materials.

● Unnavigable Materials - if no navigable materials are specified then the agent can
navigate on any material except the physical materials specified here.

Agent Categories

The agent category controls whether the agent is allowed to turn on the spot, and how edges
of physical materials with different friction are considered.

Characters are allowed to turn on the spot, so a standard A* pathfinder is used to find the
shortest path to the character’s destination regardless of how sharp the turns required are.
Path smoothing is still applied so characters will avoid making sharp turns when there is
space available to do so.

Animals prefer not to turn on the spot, so Mercuna’s kinematic pathfinder is used. This
means that animals will prefer to take corners in smooth arcs even if there is a shorter route
that requires a sharp turn available. However, if there is no alternative the animal is able to
turn on the spot.

Vehicles can’t turn on the spot. Mercuna’s kinematic pathfinder is used, but if the only route
to a destination requires a turn sharper than the vehicle’s minimum turning radius, then no
path will be found.

Additionally, for vehicles the available surface friction is considered at the sides of the agent
shape, to account for the positioning of the vehicle’s tyres.

The agent category also determines the way in which the navigation component for
navigating pawns can be configured, presenting options appropriate for that type of agent.

Configuring the Navigation Grid
A Mercuna Nav Grid is used to find paths for characters, animals and vehicles.

Example settings for Mercuna Nav Grid

A Nav Grid is generated in the level everywhere that is within a Mercuna Nav Grid Volume.
A Nav Grid can simultaneously support multiple agent types, controlled by the Supported
Agent Types setting. Create agent types in the project settings, as detailed above.

Cell Size sets the resolution of the Nav Grid which Mercuna will use to find paths for agents.
Using a smaller cell size will allow a more accurate representation of the navigable space,
but more memory will be consumed and pathfinds will take longer. As a guide, we suggest
setting cell size to half the width of your narrowest agent.

If you have agents of very different sizes, it can be more efficient to use a second nav grid
with a larger cell size for the larger agents. We recommend that the largest agent using a
nav grid should be no bigger than three times the size of the smallest agent.

Use Nav Seeds controls whether nav seeds are required. If switched off then unreachable
areas aren’t removed from the nav grid, increasing memory usage.

The Never Save property indicates whether the nav grid will be built from procedurally
generated data at runtime, so any navigation data generated in the editor should not be
saved (see Runtime Grid Building below).

The Geometry Collision Channel specifies the collision channel used to query whether
geometry should be considered for navigation by this nav grid. For a collider to be
considered by navigation it must have “Can Ever Affect Navigation” set to true, and give a
Block response to this collision channel.

The Physical Material Priorities are discussed below.

Setting up the navigable space
To set up a nav volume, first add a Mercuna Nav Grid Volume actor into the level, and size
it as required. Only boxes are supported, so to describe more complex boundaries of the
navigable area, multiple Nav Grid Volumes can be configured.

If Precise Boundaries is switched on, the boundaries of the nav grid volume are considered
hard edges, beyond which your agents can’t move. However, if the Precise Boundaries
option is turned off then navigable space will extend up to a high power of 2 boundary in the
quad-tree. This allows a significant memory saving when there is open space around the
navigable area and you don’t need to precisely specify the edge of the area your agents will
move within.

Example settings for Mercuna Nav Grid Volume

LOD and Full Detail Build settings are currently ignored by Mercuna Ground Navigation,
they will be supported in a later version of the product.

The grid generation parameters to be used in this level are configured on the Mercuna Nav
Grid actor, and on the Agent Types set in the project settings. Upon creation, the parameters
are set to default values. These defaults can be modified in the Mercuna project settings.

Nav Seeds
In order to identify which regions should be considered navigable, Mercuna requires you to
place Mercuna Nav Seed actors into levels. This allows uninteresting regions, such as the
small isolated areas inside hollow geometry or large areas outside of the level boundaries, to
be excluded and avoids pawn positions getting clamped into disconnected regions.

A Mercuna Nav Seed needs to be placed on or above the ground in the area of the level
where pawns will navigate. This seed is used during construction of the nav grid to find all
connected reachable cells, by flood filling the region starting at the nav seed. Any area not
connected to the seed will be considered unnavigable. If you have multiple disconnected
areas in your level where you expect pawns to move, a seed must be placed in each
separate area.

Nav Seeds are disabled if Use Nav Seeds is off on the Nav Grid, or when using Nav
Invokers to generate the nav grid. In this case unreachable regions of the nav grid aren’t
culled, increasing memory usage - but this means that these regions can easily be
connected by nav grid rebuild.

Note that if you also have Mercuna 3D Navigation, the nav seed will also seed any nav
octree.

Exclusion Volumes
A particular box volume can be completely excluded from navigable space by adding a
Mercuna Nav Exclusion Volume actor to the level. By default the exclusion volume will be
applied to all nav grids (and all nav octrees if you also have Mercuna 3D Navigation).

If you have multiple nav grids in a level, and only want the exclusion volume to apply to one
of them, then you can explicitly specify which grid the exclusion volume is linked to via the
volume’s properties.

The exclusion volume may be rotated and scaled.

Building the Nav Grid
Unless runtime generation is being used, the Nav Grid must be built after it is first configured
or after the level geometry has changed. This can be done by selecting Build Grid from the
Mercuna menu (accessed by clicking the Mercuna button in the Toolbar). An on screen
notification displays the progress of the nav grid construction.

If full Mercuna logging is enabled (see Logging section below), then you will see the
generation progress for each nav grid in the output log, and the total memory consumption of
the grid is reported.

Memory usage and Performance
The main influences on memory usage and performance are:

● Cell size: Smaller cell size nav grids use significantly more memory and take longer
to generate and find paths through.

● Density of geometry: Large open navigable volumes are stored efficiently, volumes
with dense geometry and narrow corridors use more memory and take longer to find
paths through.

Multiple levels
Mercuna supports both level streaming and world composition by saving the nav grid that is
relevant to each streamed or composed level (sub-level) within that level.

When using level streaming or world composition, Mercuna Nav Grid Volumes and Mercuna
Nav Seeds should be placed in the sub-level so that they are loaded and unloaded at the
correct times.

When editing the Persistent level you will see one Mercuna Nav Grid in each loaded
sub-level, this nav grid is automatically associated with the Nav Grid Volumes and Nav
Seeds that are in that sub-level.

In order to allow seamless navigation between nav grids loaded from different sub-levels,
Mercuna merges together nav grids loaded from sublevels at runtime. To enable this feature,
the nav grids in the sublevels must have exactly the same settings, have the same
orientation, and have the Allow Nav Graph Merging option set.

Additionally, all Nav Grid Volumes must have Precise Boundaries disabled in order to allow
the associated nav grids to merge. This ensures alignment of the volumes present in each
nav grid, so that whole nav grid tiles can be copied during nav grid merging.

If Allow Nav Graph Merging is false, the nav grid settings don’t match, or precise
boundaries are switched on, then nav grids won’t be merged and multiple nav grids will exist
at runtime. In this case you can manually switch pawns between nav grids using the Set Nav
Grid function on the Mercuna Ground Navigation Component.

Generating Nav Grids in Multiple Levels
The best way to generate the sub-level nav grids is from the Persistent level. Load all your
sub-levels using the levels window and then select Build All Nav Grids from the Mercuna
menu. This ensures that geometry that overlaps between levels is correctly represented in
each level’s nav grid. Once generation is complete, save all the sub-levels.

If it is not possible to load all levels due to memory constraints, go through each sub-level
containing a Mercuna Nav Grid in turn. Load a sub-level and all levels that contain geometry
overlapping or close to Nav Grid Volumes within that sub-level, generate the nav grids in that
sub-level by selecting them and using the Build Selected Nav Grid option from the Mercuna
menu. Then save the sub-level and go on to the next.

World Partition (UE5 only) - experimental
Mercuna supports UE5’s new World Partition system in a way that is transparent to the user
and is designed to be simple to use.

In contrast to Level Streaming or World Composition maps, where a Nav Grid per sublevel is
required, in a World Partition map you only need a single Nav Grid and then can freely place
Nav Grid Volumes that can span large regions.

Internally Mercuna automatically splits the grid data into chunks and saves each part within
an invisible grid of MerNavDataChunk actors. As these chunk actors are loaded and
unloaded by the World Partition system, both in the editor and at runtime, the corresponding
part of the grid will be merged in on load, or purged from memory on unload.

The whole map can therefore be covered by a single Nav Grid. Nav Grids are stored as
non-spatially loaded actors and will always be present, whereas the Nav Volumes/Modifier
Volumes/Exclusion Volumes are stored as spatial actors that are streamed in and out by the
World Partition system as required.

Nav Grids can also be built using the Mercuna world partition commandlet. This will build all
the Mercuna nav graphs by iteratively loading the cells within the specified map. The
commandlet can be run from the command line using:

UnrealEditor.exe ProjectName.uproject MapName
-run=WorldPartitionBuilderCommandlet
-Builder=MercunaWorldPartitionBuilder

Building
When the Nav Grid is built in the editor, only the part that corresponds to currently loaded
editor cells will be generated. Actors immediately surrounding the loaded cells will be
automatically loaded by the build process to ensure the edge of the generated volume is
consistent. These actors are then unloaded once the build is complete. You must not load
or unload editor cells while the build is running.

It is therefore possible to generate one part of the grid, save that section, and then load a
different set of editor cells, generate the grid for that region, and then have both sections of
the grid seamlessly merge together at runtime.

If the Nav Grid is placed into any data layers, then when building in the editor only actors
that share at least one data layer with the Nav Grid will be included for the purposes of
generating the grid.

Runtime builds and rebuilds work as normal, but note that they will only build based on the
geometry that is currently loaded in the specified volume.

Load Complete Event
When a nav grid is loaded and ready for use the OnLoadComplete event on the Nav Grid
triggers. In simple configurations where nav grids aren’t loaded from multiple sub-levels
simultaneously and there is no level streaming, this event is triggered immediately after the
nav grid is loaded. However, if the nav grid is merged with another nav grid when the level is
loaded, then OnLoadComplete is not triggered until the merge is complete. Once the event
fires, you know that pawns are able to navigate across the merged part of the nav grid.

Runtime Grid Building
It can sometimes be desirable to build the Nav Grid at runtime, particularly for procedurally
generated levels. Since these grids will be generated at runtime it is recommended that they
should have the Never Save property set on them. This prevents any data that might be
generated in the Editor while testing from being unnecessarily saved.

The build can be triggered by making a request on the nav grid actor (via Blueprint or C++)
using the Build function. Once nav grid generation has fully completed, the event
OnBuildComplete is triggered.

On Demand Grid Building
As an alternative to using Build to generate the whole of the nav grid, you can instead
choose to generate only sections of the grid at runtime.

To do this, set Never Save on the nav grid as normal and then use the Rebuild Volumes
function to build the grid in sections. If you want to generate the grid in volumes that may
have already been partially generated, but the geometry within those volumes has not
changed, set Only Unbuilt on the call to Rebuild Volumes.

Spawning Nav Grid at Runtime
You can spawn nav grids at runtime in the usual way. The basic properties of the nav grid,
such as cell size and agent type, must be set at spawn time. If you spawn through Blueprint
then these properties can be set on the spawn actor function. If you spawn in code then you
must use deferred spawning to set these properties before finishing the spawn.

You must then associate Nav Grid Volumes with the nav grid before building the nav grid
using either Build, Rebuild Volumes or Nav Invokers. Use Add To Nav Grid on the Nav
Volume to associate it with the nav grid at runtime. If this is done before the nav grid is built,
then you don’t need to call Rebuild Changes.

Runtime Grid Rebuild
Specific volumes of the Nav Grid can also be rebuilt while the game is running using the
Rebuild Volume or Rebuild Volumes functions on the Nav Grid actor. Rebuild Volume is
normally used to pick up runtime changes when just a section of the level changes, such as
a door opening.

Once the volume has been rebuilt, the event OnRebuildComplete is triggered. This event
includes the volume that was regenerated, to aid with scripting.

Pathfinds and reachability tests that go through the regenerated region may fail while the
regeneration is in progress. Once regeneration is complete, all active paths are recomputed
if they go through or close to the regenerated region, causing actors to path around new

obstacles or through newly available shortcuts. If a pathfind fails during regeneration, you
may want to retry it once the OnRebuildComplete event has been triggered.

Regenerating a region will not cause newly connected areas outside the regenerated region
to become seeded. If a runtime regeneration might connect a volume that is not connected
to any other nav seed when the nav grid is built in the Editor, you must place a seed within
that volume.

In the screenshot above, the green region on the left is navigable and seeded. The wall in
the centre has a door in it, and when this opens Rebuild Volume is triggered through
blueprint to regenerate the navigation data around the door.

However, navigation into the region on the right will still not be possible because that region
was not seeded. This can be fixed by adding a Mercuna Nav Seed into the right hand region.

Alternatively, if geometry might be destroyed in arbitrary locations so that you aren’t sure
what areas of the world might need seeding, you can disable nav seeds so that nav grid will
cover all possible navigable surfaces regardless of reachability. To do this, switch off Use
Nav Seeds on the nav grid.

Physical Materials
Physical Materials are used by Mercuna to determine the surface friction available for
vehicles, as well as being one way of specifying regions of higher path cost (using a
Mercuna Physical Material).

Therefore, it is important to check that the nav grid is picking up your physical materials
correctly. You can do this with the Cells - Surface Type nav grid debug draw mode.

If meshes with different physical materials are overlapping, then the nav grid might pick the
wrong one up during the build. To override which material is picked up, you can specify
which physical materials have priority on the Mercuna Nav Grid actor.

Physical Material priority ordering

Any physical materials listed here will have priority in the order they are specified in the
array, and all other physical materials will be given lower priority.

Physical Materials on Landscapes
Mercuna picks up physical materials from landscapes if they are set up, but the Unreal
Engine configuration can be confusing. If you are seeing unexpected behaviour then these
notes may help:

● Any physical material set on the Landscape Material on the Landscape is ignored.
You must set the Default Phys Material on the Landscape instead.

● For landscapes with multiple layers, the physical material is set on the LayerInfo.
● In UE4 versions prior to UE4.25, there was a bug that meant physical materials

weren’t applied to the Landscape after being set. Workaround this by toggling the
Generate Overlap Events setting in the Collision properties of the Landscape to
cause UE4 to pick up the physical material change

Nav Invokers
For procedural maps, or very large open worlds, it is sometimes not possible or desirable to
generate the entire navgrid at editor or even at initial load time. Mercuna therefore offers a
nav invoker system that generates and maintains patches of navgrid in a local area around
specified actors. As these actors move through the world new navgrid is generated in front of
them, and no longer needed navgrid removed from behind them.

Patches of navgrid created around two nav invokers

The advantages of using nav invokers is for very large worlds not having to store the entire
navgrid in memory, and for procedural levels not having to wait at game start for the entire
grid to generate. However the biggest disadvantage is the extra CPU usage as navgrid is
constantly being generated and removed as invokers move around.

One other major constraint is that agents can only move to destinations within the area of
the generated navgrid. Requesting an agent to move to a destination outside this area will
fail.

Registering an invoker
Usually it will be AI/NPCs that are registered as nav invokers, though it is possible to register
any actor as one. For each invoker you will need to specify the Generation Radius and the
Removal Radius. The Generation Radius is the distance within navgrid must always exist,
while the Removal Radius is the distance with which navgrid can exist. Any navgrid beyond

the latter distance from an invoker will be culled. However, for performance reasons these
distances are approximated and not strictly obeyed. The Removal Radius must always be
greater or equal to the Generation Radius. In cases where there exist multiple nav invokers
of the same agent type within the world, navgrid is shared between them.

An actor can be registered as a nav invoker in two different ways.

1) Calling the RegisterInvoker function on the appropriate Navgrid. When registering a
nav invoker through the RegisterInvoker function, the agent type must be specified
manually. The actor can be unregistered using the corresponding UnregisterInvoker
function

2) Adding a Mercuna Nav Invoker component to a pawn. If the pawn has a Mercuna
ground movement component the invoker’s agent type can be automatically detected
from it. Alternatively, the agent type can be specified manually if required. The pawn
is destroyed it will be unregistered as an invoker.

In both cases, the Generation Radius and Removal Radius must be manually specified.

On registering the first invoker with a navgrid, if there are any existing areas of generated
grid (that had been previously created via a runtime Build/Rebuild call) they will be cleared.

Runtime Rebuilds
When doing runtime rebuilding of an area of the navgrid, while using nav invokers, only parts
of the grid within the specified volume that are within range of a nav invoker will be rebuilt.
Also, only nav grid of the same agent type as the nav invoker will be rebuilt.

Invoker Volumes
Invoker volumes denote areas in the world that should be either always generated or
generated in their entirety if any part of the volume is overlapped by a nav invoker. This can
be particularly useful in geometry rich parts of the world, where a path to reach a nearby
point may require the agent to take a detour outside of the currently navigable area.

An invoker volume can be created by adding a Mercuna Nav Invoker Volume actor to the
level. Each invoker volume belongs to a nav grid and must have the same orientation as
associated nav grid actors.

The invoker volume Type property can either be Always (default) or OnOverlap. A volume
set to Always means that nav grid will always be present through the volume, regardless of
whether any invokers are in or near it. Nav grid for OnOverlap volumes is only generated
when the volume is overlapped by an invoker.

The nav grid for Always nav invoker volumes can be generated by an editor build. Just these
volumes will be generated and then saved as part of the level. Building the grid for these
volumes at editor time saves having to generate the grid at game start up time. For building
Always volumes in the editor, Use Nav Seeds must be disabled on the nav grid.

Pathfinding
Finding paths through the Nav Grid can be done implicitly by making your pawn movement
controlled by Mercuna, this method allows you to take advantage of the Mercuna steering
system.

Mercuna also supports partial paths (disabled by default). A partial path is returned when a
complete path can’t be found to the specified destination, if it is disconnected from the start
point, for example. Instead Mercuna returns a path to the closest point to the destination that
is reachable.

Nav Grid Testing Actor
In order to easily debug and understand pathfinding problems a pair of Mercuna Nav Grid
Testing Actors can be used to generate test paths. Simply drag two testing actors into the
level, and on one of the actors set the other one as the Other Actor, and set the agent
type.

When you do this a test path will be drawn connecting the two actors. This path will update
when either actor is moved. A white path means a complete path could be found, while an
orange path means that only a partial path could be generated.

The Min Turn Radius property sets the radius of the smallest turning circle, and the Ideal
Turning Radius sets the turning circle it ideally tries to turn at if space is available. The Max
Speed allows for some basic speed integration.

Slope Penalty (0-1) indicates how much the agent disfavours slopes (note that this is
relative to the maximum slope for the agent type). Max Path Length allows you to control
how far the pathfinder will search.

An example path between two Mercuna Nav Grid Testing Actors

Navigation Cost Multipliers
There may be particular surfaces that agents should not path over. Mercuna supports a
custom Physical Material to allow this to be specified.

To create a Physical Material with a navigation cost multiplier, create a new Physical Material
blueprint and specify MercunaPhysicalMaterial as the class.

Creating a Mercuna Physical Material

The Mercuna Physical Material has an additional property, Cost Multiplier.

Mercuna will treat paths over any surfaces using this material as if they were Cost Multiplier
times longer than their path length. This means if the multiplier is set above 1.0x then
Mercuna will prefer paths that navigate around the surface with this material.

Due to the nature of the A* algorithm used for pathfinding, costs can only be increased and
not decreased below 1.0x. Using a very high cost multiplier will mean that the pathfinder will
search a long way for alternatives, and thus can considerably increase the computational
cost of the path find. For this reason, the maximum cost multiplier that can be set is limited to
15.0x.

Creating a Mercuna navigated Agent
In order to allow pawns to use Mercuna to navigate they need to have the following
components:

● Mercuna Ground Navigation - this component provides the pawn with navigation
capabilities, accessible through Blueprint.

● Mercuna Obstacle - this marks the pawn as a dynamic obstacle for the purpose of
ground navigation. The obstacle component must be a child of the root scene
component.

● A suitable movement component, currently this must be either a Character
Movement or Wheeled Vehicle Movement component

Vehicle blueprint setup for Mercuna navigation

Navigation Component
The navigation component offers both a C++ and Blueprint interface for making movement
requests to the pawn.

Mercuna will try to automatically find a Mercuna Nav Grid that is compatible with the Agent
Type set on the Ground navigation component, and automatically fill in steering
parameters based on the setup of the pawn. Alternatively, these can be explicitly overridden
here.

For the purposes of navigation the size and shape of the agent will be taken from the Agent
Type. When the navigation component is selected the agent’s navigation shape will be
drawn in the viewport so that you can check that it is a good fit for the agent.

Example ground navigation components where steering parameters have been explicitly set

Example for a wheeled vehicle
For wheeled vehicles, check these settings in your agent type configuration:

● The maximum slope angle (in the project settings) - the vehicle may ‘believe’ that it
can travel up slopes that it cannot, or cannot travel up slopes it is able to.

● The step height or max angle change is too high - The vehicle attempts to drive
over terrain that is too rough

If you are manually setting the steering parameters that control how Mercuna expects the
vehicle to behave, then

● Max Speed - The maximum speed of your vehicle
● Max Throttle Acceleration - The acceleration of your vehicle, limited by the power

of your engine. Note that for high values you may be limited by the friction of the
physical surface.

● Max Brake Deceleration - The deceleration provided by your brakes.

Specific to Vehicles, in the Movement Style there is the Traction Estimate, increasing this
above 1 causes the vehicle to overestimate the available traction and make higher speed
turns at the risk of sliding. Reducing the value has the opposite effect of underestimating the
traction resulting in more cautious driving.

The reverse speed will be picked up automatically for PhysX vehicles, and for a
NavGridTestingActor the maximum speed in reverse will default to ¼ of the MaxSpeed.

Example for a slowly turning animal (e.g. a horse)
Mercuna ground navigation can be used to steer an agent that has a
CharacterMovementComponent.

It is recommended to use velocity-based (rather than acceleration-based) path following (this
is due to the UE character movement component rotating the character based on the
acceleration vector input). To configure velocity-based path following make sure that Use
Acceleration for Paths is disabled on the CharacterMovement component.

Either set Orient Rotation to Movement True, or to get smoother rotation set:
Use Controller Rotation Yaw False on the Character, and set Use Controller Desired
Rotation True and Orient Rotation To Movement False on the CharacterMovement
Component.

If you are manually setting the steering parameters that control how Mercuna expects the
animal to behave, then

● Max Speed - The maximum speed of your animal
● Max Acceleration - Should be set to the maximum acceleration of your animal
● Min Turning Radius - Radius of the tightest turn your animal can make while moving

Example for a humanoid Character
Settings should be similar to a slowly turning animal. By setting the agent category to
Character the pathfinder will allow paths with sharp corners, taking advantage of the
characters ability to change direction quickly.

Obstacle Component
Any actor can be made a dynamic obstacle by adding a Mercuna Obstacle component. It is
expected that Mercuna navigated pawns will usually have one, but other pawns such as the
player, might also have an obstacle component so that the AIs avoid them.

Obstacle settings

By default Mercuna will automatically try to calculate the best shape of obstacle that
encloses the pawn, for pawns with a Mercuna Ground Navigation component this will be
set based on the agent type. Alternatively, the shape and size can be manually set. The
available shapes are Sphere, Box, Cylinder. The shape only applies for avoidance.

The Movement Type configuration specifies how avoidance should treat the agent.
Characters will prefer to deviate from their path in order to avoid other agents, whereas
Vehicles will prefer to adjust their speed but stay on their path. Additionally, characters will
adjust their paths assuming that vehicles will not avoid them.

Actors with an Obstacle component should have “Can Ever Affect Navigation” switched off
on their Collision settings on all their components so they aren’t baked into the nav grid.

Modifier Volumes
Nav Modifier Volumes provide a mechanism for designers to influence and limit navigation
within specific regions. For example, you can increase the cost of navigating through an
area, such that paths will prefer to go around it, or you can mark volumes as being restricted
to particular pawn types, or pawns as restricted to staying within certain volumes.

Usage flags
In the project settings you can define up to 32 custom global usage types. These can then
be assigned to individual Modifier Volumes to mark what the volume represents. Flags
corresponding to each usage type can be set on the Ground Navigation Component of
pawns to indicate which types of volumes it is allowed to enter, or that it is required to stay
within.

For example, if you define a Fire usage type, you can mark Modifier Volumes as
representing a region that is on Fire. By default pawns will not be allowed to enter that
region, but they can be configured to enter and move through Fire regions as normal, or
alternatively can be restricted to only move inside of Fire regions (e.g. a fire demon).

Costs
During a path search through the Nav Grid, Modifier Volumes allow designers to increase
the cost of specific volumes and therefore discourage pawns from moving through them.

When a volume has a modified cost multiplier, the path distance is multiplied by the cost
multiplier to calculate the expense of traversing a volume. The size of the additional cost of
passing through a volume determines how far pathfinding will search for longer alternative
routes that avoids it, before deciding to use it as part of the path.

Due to the nature of the A* algorithm used for pathfinding, costs can only be increased and
not decreased below 1.0x. Using a very high cost multiplier on a volume will mean that the

pathfinder will search a long way for alternatives, and thus can considerably increase the
computational cost of the path find. For this reason, the maximum cost multiplier that can be
set on a volume is limited to 15.0x.

If multiple modifier volumes overlap, the maximum cost multiplier across the overlapping
volumes is used.

Using Modifier Volumes

Defining usage types
Usage types are defined in the Mercuna page of the project settings. Up to 32 usage types
may be defined.

Warning: removing usage types doesn’t update the usage flags configured on
existing modifier volumes or navigation components. Removing the Water usage type
in the above example, means that all the usage flags on actors that previously
corresponded to Water, will now be applied to the Glue usage type instead.

Creating modifier volumes
To create a modifier volume, add a Mercuna Nav Modifier Volume actor into the level, size
and rotate it appropriately. Only box shaped Modifier Volumes are supported. To describe
more complex boundaries, multiple Nav Modifier Volumes can be created.

Configuring modifier volumes
In the Mercuna section of the modifier volumes property panel, the cost and usage types for
this volume can be configured.

Modifier volume properties

Whenever a volume is created, moved or resized in the Editor the navigation grid must be
rebuilt for the change to be applied.

Nav Modifier Volumes need to be associated with a nav graph. Similarly to Nav Grid
Volumes, if the Mercuna project setting “Auto Link Nav Volumes with Graphs” is enabled (the
default) new modifier volumes will be automatically linked to the nav graph if there is only
one nav graph in the level when they are created. Otherwise you need to manually set the
correct Nav Grid in their properties.

Configuring navigation components
Costs are automatically taken into account during pathfinding and spatial searches, but by
default agents will not enter modifier volumes that have any usage types set. To allow or
require pathfinding through volumes of particular types, the corresponding usage flags can
be set on the Mercuna Ground Navigation Component.

The default for each flag is Not Allowed. Required means the agent can only move in
volumes and through nav links with that usage type set. Allowed means the agent may, but
does not have to, enter volumes and nav links with that usage type.

Runtime changes
At runtime, the settings on Modifier Volumes can be updated using the SetEnabled,
SetUsageFlags and SetCostMultiplier functions on the Modifier Volume actor. These
functions are exposed to blueprint.

Any paths through the changed modifier volume will be updated to reflect the change.

Changing these settings is relatively inexpensive, compared with the cost of a full grid
rebuild for the modified volume.

Modifier volumes may be added, removed or moved at runtime, however this requires
rebuilding the nav grid in the modified volume (the rebuild is triggered automatically), so
should not be done too frequently.

To add a modifier volume, spawn a Modifier Volume actor, set the usage types and cost
multiplier, and then use the AddToGraph function to add the modifier volume to the nav grid.

To remove a modifier volume, simply destroy the actor, or alternatively call
RemoveModifierVolume on the NavGrid.

Modifier Volumes can be moved, rotated and resized by changing their transform in the
normal way.

Restrictions
A maximum of 32 modifier volumes can be present in each 64x64 cell tile of the nav grid.
There is also a limit of 255 distinct overlapping combinations of modifier volumes within a
tile.

Nav Links
Sometimes you will want agents to navigate in non-standard ways, for example climbing a
ladder or making a jump. Mercuna Ground Navigation supports this through Nav Links.

A Nav Link has two ends, labelled Left and Right, and a connection is inserted into the
navigation graph between the two ends when the nav grid is built. You can choose for the
link to be navigable in one or both directions.

A simple navlink representing a jump

Your Blueprint or Game code is responsible for actually traversing the link, whether by
teleportation, playing an animation or any other method desired. Once the agent reaches the
end of the link, Mercuna takes control again and continues the navigation.

Nav Link Creation
Normally, you will create a blueprint for each type of nav link supported in your game, and
then place instances of these blueprints into your levels.

To create a Nav Link blueprint, add a new blueprint class, deriving from MercunaNavLink.

When an agent uses the nav link, the Nav Link Start event is triggered on the nav link. This
supplies the Pawn navigating the link the direction the link is being navigated (left to right or
right to left) and the position of the opposite end of the link.

When this event is fired your blueprint or game code should cause the agent to move to the
destination, e.g. by triggering an animation.

To complete the nav link and resume the agent moving down the rest of the path, you can
call the Nav Link Complete function on the Mercuna Ground Navigation component.
Alternatively, you can set a non-zero auto completion distance for the destination end of the
nav link, if this is set Mercuna will automatically trigger link completion once the agent is
within that distance of the destination.

Configuring the Nav Link
After selecting the nav link actor, you can position the ends of the nav link by clicking on
them and then moving them in the normal way.

If you specify a limited Entry Angle range then you can also rotate the end to determine the
acceptable range of entry angles, the black arc represents the valid entry angles.

Cost
The path finder normally considers the
cost of moving through the navigable
space to be equal to the distance the
agent needs to move. For nav links, the
cost can be adjusted to make agents
prefer to use the link, or prefer not to. By
default, the cost is set to the distance
between the endpoints.

Note that if the link has a lower cost than
the straight line distance, then it will only
be used preferentially if the path finder

discovers the link during its search. This won’t happen if a straightforward path is available,
but the agent would have to go backwards to find the cheaper nav link, for example.

Usage Types
Similarly to Nav Modifier Volumes, usage types can be configured on Nav Links in order to
restrict which types of agents can navigate the link. See the Modifier Volumes section of the
documentation for full information on setting up Usage Types.

Note that if an agent has a usage type set to Required then that usage type must be set on
the nav link for it to be able to use the nav link.

Agent Types and Nav Grids
You must specify which agent types the nav link supports. By default, the nav link will be
associated with all nav grids that have navigable space at the endpoints of the link, if you
want to restrict it to a particular nav grid, you can specify that explicitly.

Steering
In order to give smooth, natural looking movement Mercuna uses polynomial curves to
interpolate between path points to generate smooth curves. These splines are constructed
taking into account the available space.

Whereas the pathfind is performed when an agent is given a destination, the smooth curve is
generated on demand. If the agent is pushed, or has to avoid other actors causing it to move
away from the curve, then the curve and, if necessary, the underlying path are automatically
regenerated.

Avoidance
Mercuna offers dynamic obstacle avoidance to ensure that pawns don’t collide while moving.
Any actor with a Mercuna Obstacle Component is automatically considered as an obstacle
that needs to be steered around for the purpose of avoidance. For the purpose of avoidance
agents will be treated as circles if the obstacle is a sphere or a cylinder, or as a rectangle for
box shaped obstacles such as vehicles (if the rectangle is rotating rapidly it is treated as a
circle).

The avoidance algorithm used by Mercuna is a modified version of ORCA velocity obstacle
method that additionally takes into account the fixed level geometry stored in the nav grid. In
the Mercuna Ground Navigation Component there is a MinAvoidanceTime which can be
adjusted to change how early the agents attempt to avoid a collision (shorter times mean the
agents move past each other more aggressively). A default avoidance time of around 0.3s is
recommended for characters, or 1s for vehicles.

Blueprint Functionality
The following functions are available on the Mercuna Ground Navigation Component and
can be used to direct an agent to move between goals:

● MoveToLocation - move to a position, stopping within end distance of the goal.
● MoveToLocations - move through a series of positions, visiting them in order.
● AddDestinationLocation - add an additional destination to the end of the current

path. The agent must currently be moving to a position or series of positions.
● MoveToActor - move to within a given end distance of a destination actor, if the

destination moves while the pawn is moving, the path will be updated to track the
destination.

● TrackActor - follow a given actor attempting to stay with a specified radius. If the
target actor is moving the pawn will match it’s speed when within the track radius.

● CancelMovement - immediately terminates the agent’s current movement action
● ConfigureMovement - prompt the actor to reconfigure itself, for example if it has

been moved between nav grids or the vehicle configuration has changed. Any
current move actions are cancelled.

● OnMoveCompleted - a delegate that is triggered whenever a movement action is
complete. Returns the result of the movement action as to whether it completed
successfully, failed, was cancelled or was invalid (usually due to an invalid
destination).

● GetNavGrid - Get the current nav grid this pawn is using.

EQS
Mercuna currently offers four simple EQS tests. These first three of these tests are filters
returning whether a point passes or fails, and do not score the points

● Navigable - test whether a point is within the seeded, navigable area for a pawn. Be
aware that the points might be disconnected from the querying pawn, however this
test is much cheaper than a reachability test.

● Reachable - test whether a point is reachable by a pawn from its position within a
specified path distance. If the path distance is set to 0.0, then a faster test is used
that only filters out points that are not connected to the pawn at all. This test does not
consider the turn rate limits of the pawn, so it only guarantees that a path can be
found to the target for pawns that can turn in place.

● Raycast - test whether there is a clear straight line path from the context to the
positions.

The fourth available EQS test is:

● Path Length - test whether the points are reachable, and score the reachable points
based on the path length from the querier to the point. This test does not consider the

turn rate limits of the pawn, so it only guarantees that a path can be found to the
target for pawns that can turn in place.

Additionally, Mercuna offers one EQS test that modifies the positions of the test points:

● Project - test whether a point is in a navigable area and project it vertically on to the
nav grid. The test fails and the point is not moved if the point is further than the
maximum projection distance from the nav grid.

Mercuna also offers an EQS point generator:

● Random On Navgrid - Generates a number of randomly placed points on the
navgrid generated using a uniform distribution, such that all points are within a
specified path distance of the context’s querying actor.

Debugging Problems
If you find that your pawn is not moving as expected, or at all, there are several debugging
mechanisms available within Mercuna to help quickly identify problems.

Logging
Mercuna makes logs to the Unreal logging system to indicate progress and error conditions.
By default, only Warning and Error logs are written, to enable progress information add the
following to DefaultEngine.ini:
[Core.Log]
LogMercuna=Log

If more information is needed then Editor Preferences > Mercuna > Enable Extra Logging,
can be enabled. This option persists between editor restarts. Extra Logging causes Mercuna
to output all log messages, including additional debug messages, to a dedicated
Mercuna.log file, located in the same directory as the standard Unreal logs.

To enable the Mercuna.log on standalone builds, add the following line to the
Engine/Config/ConsoleVariables.ini:
mer.LogToFile=1

Profiling
Mercuna is integrated with Unreal Engine’s inbuilt profiler. The current amount of time
Mercuna is taking to run each frame, as well as the current memory usage, can be seen
using the stat Mercuna console command.

Example Mercuna in editor profile

If an entry in the profiling list has (Job) after it’s name, then it is being run as an
asynchronous job on a background thread and so will normally have no effect on the frame
rate.

Debug Actor
When trying to understand the actions of a particular agent, it can be useful to set it as the
Mercuna debug actor. This can be done by selecting the agent and setting it as the Mercuna
debug actor in the Mercuna toolbar menu. The same menu also allows the debug actor to be
cleared.

On screen log messages will be displayed for the Mercuna debug actor and additional debug
draw is available.

In Debug builds or if the define MER_DEBUGGING is set, then additional debug logs will
also be recorded to Mercuna.log for the debug actor. If you report a movement problem to
Mercuna support it is helpful to include these logs and a video capture of the problem.

Debug Draw
In order to help understand the current movement of Mercuna controlled actors the following
debug draw is available from the Mercuna editor menu:

● General: Shows speed and velocity vector for all Mercuna actors
● Obstacle bounds: Shows blue spheres representing the dynamic obstacles

registered with Mercuna
● Paths: Shows all paths currently being followed by Mercuna actors
● Steering: Shows the desired velocity vector for the current debug actor

● Avoidance: Shows various pieces of avoidance related debug draw for the current
debug actor including the velocity obstacle cones and the ORCA planes.

Navigation Grid

Debug Draw
In order to help understand Mercuna’s representation of the geometry for navigation, you
can draw the navigation grid, there are the following modes:

If you only have a single Agent type defined in your project, the navigation properties for
this will be automatically displayed, otherwise you will need to select the desired agent type.

● Grid cells - Which cells in the navigation grid an agent could traverse (in green).
● Pathfinding polymesh - The polygon mesh used for accelerated character

pathfinding and reachability tests.
● Last pathfind for debug actor - Polymesh representation (for characters) or Grid

representation (for animals and vehicles) of the last pathfind for the selected debug
actor or a Nav Grid Testing Actor showing A* costs.

When one of the debug draw modes is active, further advanced options are shown at the
bottom of the Navigation Debug Draw Menu that allow you to further customize what is
drawn.

Exporting the grid
When building a nav grid on a server, due to the lack of rendering, it can be difficult to check
that the grid has been generated correctly. Mercuna therefore allows you to export the grid to
an OBJ model file, that can be loaded in any common modelling program (including the
Windows inbuilt 3D Viewer), via either the SaveToObjFile Blueprint node or the console
command:

mer.Grid.SaveOBJ GridActorName AgentTypeName [Polymesh]

The exported obj file will be saved in the project root directory and named
GridActorName.obj.

Migration Issues

v2.5
The default Mercuna Nav Grid cell size has been changed from 100 to 20, as 20 is a more
suitable default for characters. If you have any grids using the default cell size of 100 then
these will automatically be changed to use cell size 20 on upgrade. Please check your nav
grids if using cell size 100 intentionally (e.g. for vehicle nav grids).

v2.4
It used to be possible to turn any actor into a Mercuna Nav Seed by adding a Mercuna Nav
Seed component. We have retired the seed component, as this allowed some significant
performance improvements. Now only Mercuna Nav Seed actors seed the nav grid.

Known Issues
Known issues in Mercuna Ground Navigation:

● If a pawn is very close to the start of a nav link when it begins moving, it may not
reach the correct orientation before entering the nav link.

● When generating the navigable area, the agent step height is added to the agent’s
height clearance. This ensures that the agent can safely go up any steps, but is
restrictive when the agent wants to navigate under low obstacles.

