

User​ ​Guide

v0.8

Contents
Installing​ ​the​ ​plugin

Configuring​ ​the​ ​Navigation​ ​Octree
Setting​ ​up​ ​the​ ​navigable​ ​space

Nav​ ​Seeds
Building​ ​the​ ​octree
Multiple​ ​levels
Memory​ ​usage​ ​and​ ​Performance

Pathfinding
Path​ ​Testing​ ​Actor

Creating​ ​a​ ​Mercuna​ ​navigated​ ​Pawn

Movement
Mercuna​ ​3D​ ​Movement​ ​Component

Steering

Blueprint​ ​Functionality

EQS

BT​ ​Nodes

Debugging​ ​Problems
Logging
Debug​ ​Actor
Debug​ ​Draw
Octree​ ​Debug​ ​Draw

Installing​ ​the​ ​plugin
The Mercuna plugin is a standard Unreal game plugin compatible with Unreal Engine 4.16+.
The plugin can be installed by simply copying the Mercuna directory into the ​Plugins
directory within your game project. Alternatively, Mercuna can be installed as an Engine
plugin in the appropriate engine folder. Once installed, the Mercuna components, actors and
menu​ ​will​ ​automatically​ ​be​ ​available​ ​when​ ​you​ ​next​ ​start​ ​the​ ​editor.

Configuring​ ​the​ ​Navigation​ ​Octree
The Mercuna Nav Octree is used to find paths for pawns through 3D space, much like the
Nav​ ​Mesh​ ​is​ ​used​ ​to​ ​navigate​ ​pawns​ ​over​ ​terrain.

Nav Octree is generated in the level everywhere that is within a ​Mercuna Nav Volume​.
Multiple nav volumes can be present in one level, and if they overlap then pawns can
navigate seamlessly between them. All space outside of the Nav Volumes is treated as
unnavigable.

Setting​ ​up​ ​the​ ​navigable​ ​space
To set up a nav volume, first add a Mercuna Nav Volume actor into the level, and size it
using the Brush Settings. Only axis aligned boxes are supported, so you must not rotate or
scale​ ​the​ ​volume,​ ​and​ ​you​ ​must​ ​leave​ ​the​ ​brush​ ​shape​ ​set​ ​to​ ​Box.

Example​ ​settings​ ​for​ ​Mercuna​ ​Nav​ ​Volume

After the first Nav Volume is added to the level, a ​Mercuna Nav Octree actor is
automatically added to the level. There can only be one Mercuna Nav Octree actor per level
regardless​ ​of​ ​how​ ​many​ ​Nav​ ​Volumes​ ​there​ ​are.

The octree generation parameters to be used in this level are configured on the Mercuna
Nav Octree actor. Upon creation, the parameters are set to default values. These defaults
can​ ​be​ ​modified​ ​in​ ​the​ ​Mercuna​ ​project​ ​settings.

Example​ ​settings​ ​for​ ​Mercuna​ ​Nav​ ​Octree

The parameters determine how detailed the representation of the navigable space is in the
octree,​ ​and​ ​the​ ​sizes​ ​of​ ​pawns​ ​that​ ​can​ ​accurately​ ​navigate​ ​through​ ​it.

The ​cell size determines the side length of the cubes that make up the lowest level of the
octree. Cells are considered unnavigable if there is any level geometry within them, so the
larger​ ​the​ ​cell​ ​size​ ​the​ ​greater​ ​the​ ​error​ ​margin​ ​in​ ​the​ ​representation​ ​of​ ​the​ ​geometry.

The ​minimum and ​maximum pawn radius determine what navigation data is stored in the
octree. Paths will never go closer to geometry than the minimum pawn radius, and the
octree doesn’t store data to allow paths to be found with more clearance from geometry than
the​ ​maximum​ ​radius.

The radius is expressed as multiples of cell size, so for a cell size of 30, a minimum radius of
2 and a maximum radius of 5, entities of radius between 60 and 150 can be accurately
navigated through the level. Entities that are smaller than the minimum radius will navigate
successfully, but might not take paths through small gaps they could fit through. Entities that
are larger than the maximum radius can’t be navigated properly - paths might make them
collide​ ​with​ ​geometry.

Nav​ ​Seeds
In order to identify which regions should be considered navigable Mercuna requires you to
place ​Mercuna Nav Seed actors into levels. This allows uninteresting regions, such as the
small isolated areas inside hollow geometry or large areas outside of the level boundaries, to
be​ ​excluded​ ​and​ ​avoids​ ​pawn​ ​positions​ ​getting​ ​clamped​ ​to​ ​the​ ​wrong​ ​side​ ​of​ ​polygons.

A Mercuna Nav Seed needs to be placed in the main part of the level where pawns will
move. This seed is used during construction of the octree to find all connected reachable
cells, by flood filling the region starting at the nav seed. If you have multiple disconnected
areas in your level where you expect pawns to move, a seed must be placed in each
separate​ ​area.

Building​ ​the​ ​octree
The octree must be built after it is first configured or after the level geometry has changed.
Do this by selecting Build octree from the Mercuna menu (accessed by clicking the Mercuna
button in the Toolbar). The octree will also be automatically rebuilt when any octree
configuration parameters are changed or any nav volumes are moved or resized. An on
screen​ ​notification​ ​displays​ ​the​ ​progress​ ​of​ ​the​ ​octree​ ​construction.

If full Mercuna logging is enabled (see ​below​), then you will see the generation progress for
each navigation volume in the output log, and the total memory consumption of the octree is
reported.

Multiple​ ​levels
Mercuna supports both level streaming and world composition by saving the octree that is
relevant​ ​to​ ​each​ ​streamed​ ​or​ ​composed​ ​level​ ​(sub-level)​ ​in​ ​that​ ​level.

When using level streaming or world composition, Mercuna Nav Volumes and Mercuna Nav
Seeds should be placed in the sub-level so that they are loaded and unloaded at the correct
times.​ ​Nav​ ​Volumes​ ​and​ ​Nav​ ​Seeds​ ​should​ ​only​ ​be​ ​placed​ ​when​ ​editing​ ​the​ ​sub-level.

When editing the Persistent level you will see one Mercuna Nav Octree in each sub-level,
this is automatically associated with the Nav Volumes and Nav Seeds that are in that
sub-level.

Mercuna does not currently support navigation between octrees from different levels. Nav
Volumes in different sub-levels must be non-overlapping when they are loaded in the
Persistent​ ​level.

The best way to generate the octrees is from the Persistent level. Load all sub-levels in the
and then select Build Octree from the Mercuna menu. This ensures that geometry that
overlaps between levels is correctly represented in each level’s octree. Once generation is
complete,​ ​save​ ​all​ ​the​ ​sub-levels.

If it is not possible to load all levels due to memory constraints, load and generate groups of
levels at a time, saving only the levels for which all overlapping geometry is included after
each​ ​generation.

Memory​ ​usage​ ​and​ ​Performance
The​ ​main​ ​influences​ ​on​ ​memory​ ​usage​ ​and​ ​performance​ ​are:

● Cell size​: Smaller cell size octrees use significantly more memory and take longer to
generate.

● Density of geometry​: Large open navigable volumes are stored efficiently, and are
quick to pathfind through, volume with dense geometry and narrow corridors use
more​ ​memory​ ​and​ ​take​ ​longer​ ​to​ ​find​ ​paths​ ​through.

● Maximum pawn radius​: Larger maximum pawn radiuses take longer to generate
and​ ​slightly​ ​increase​ ​memory​ ​usage.

Pathfinding
Finding paths through the nav octree can be done implicitly by making your pawn movement
controlled by Mercuna, this method allows you to take advantage of the Mercuna steering
and avoidance systems. Alternatively, path finding can be requested explicitly by making a
directly request to the octree (via Blueprint or C++) and receiving a MercunaPath object
which​ ​can​ ​then​ ​be​ ​used​ ​as​ ​required.

As pathfinding is performed asynchronously, the returned MercunaPath object is not
immediately valid, but can take one or two frames to complete. You must either check each
frame​ ​to​ ​see​ ​if​ ​it​ ​is​ ​ready​ ​yet​ ​or​ ​subscribe​ ​to​ ​its​ ​PathUpdated​ ​delegate.

For longer paths Mercuna uses hierarchical pathfinding. An approximate path is found
through a simplified representation of the level and then a detailed path find is performed
guided by the approximate path. This allows much longer paths to be found than would be
possible​ ​with​ ​simple​ ​A*​ ​pathfinding​ ​alone.

Mercuna also supports partial paths (enabled by default). A partial path is returned when a
complete path can’t be found to the specified destination, if it is disconnected from the start
point, for example. Instead Mercuna returns a path to the closest point to the destination that
is​ ​reachable.

Path​ ​Testing​ ​Actor
In order to easily debug and understand pathfinding problems a pair of ​Mercuna Nav
Testing Actors can be used to generate test paths. Simply drag two testing actors into the
level, and on one of the actors set the other one as the ‘Other Actor’ property. When you do
this a test path will be drawn connecting the two actors. This path will update when either
actor is moved. A red path means a complete path could be found, while an orange path
means​ ​that​ ​only​ ​a​ ​partial​ ​path​ ​could​ ​be​ ​generated.

The Radius property specifies how much clearance there should be around the test path -
this​ ​allows​ ​you​ ​to​ ​check​ ​what​ ​path​ ​larger​ ​and​ ​smaller​ ​actors​ ​would​ ​take.

A​ ​test​ ​path​ ​between​ ​two​ ​Mercuna​ ​Nav​ ​Testing​ ​Actors

Creating​ ​a​ ​Mercuna​ ​navigated​ ​Pawn
In order to allow pawns to use Mercuna to navigate they need to have the following
components:

● Mercuna​ ​Obstacle​​ ​-​ ​this​ ​marks​ ​the​ ​pawn​ ​as​ ​a​ ​dynamic​ ​obstacle​ ​for​ ​the​ ​purpose​ ​of
3D​ ​navigation.​ ​​ ​Th​ ​obstacle​ ​component​ ​must​ ​be​ ​a​ ​child​ ​of​ ​the​ ​root​ ​scene​ ​component.

● Mercuna​ ​Navigation​​ ​-​ ​this​ ​component​ ​provides​ ​the​ ​pawn​ ​with​ ​navigation
capabilities,​ ​accessible​ ​through​ ​Blueprint.

● A​ ​suitable​​ ​movement​ ​component​,​ ​e.g.​ ​the​ ​​Mercuna​ ​3D​ ​Movement​​ ​component

Pawn​ ​blueprint​ ​setup​ ​for​ ​Mercuna​ ​navigation

Movement
In order for the Mercuna navigation component to drive the moment of a pawn, the pawn
needs to have a suitable movement component. A simple default movement component is
provided - the ​Mercuna 3D Movement Component​. This is suitable for a variety of 3D
flight​ ​styles.

Custom movement components can easily be implemented, but in order to be used by
Mercuna they must provide the ​IMercuna3DMovement ​interface. The Mercuna Navigation
component automatically detects and uses the first movement component it finds on the
pawn​ ​that​ ​provides​ ​that​ ​interface.

Mercuna​ ​3D​ ​Movement​ ​Component
The Mercuna 3D Movement component provides a Newtonian flight model for a pawn
moving​ ​freely​ ​in​ ​space.​ ​​ ​It​ ​allows​ ​you​ ​to​ ​configure:

● Max​ ​Speed​​ ​-​ ​The​ ​maximum​ ​speed​ ​the​ ​pawn​ ​may​ ​move​ ​at
● Max​ ​Accel​​ ​-​ ​The​ ​maximum​ ​acceleration​ ​of​ ​the​ ​pawn​ ​in​ ​each​ ​axis​ ​direction​ ​(in​ ​the

pawn’s​ ​local​ ​coordinates).
● Max​ ​Ang​ ​Speed​​ ​-​ ​The​ ​maximum​ ​angular​ ​speed​ ​the​ ​pawn​ ​may​ ​rotate​ ​at,​ ​in

radians/sec
● Max​ ​Ang​ ​Accel​​ ​-​ ​The​ ​maximum​ ​angular​ ​acceleration​ ​allowed​ ​on​ ​each​ ​axis,​ ​in

radians/sec

Steering
Mercuna navigates the pawn down the path taking into account the maximum speed and
acceleration​ ​configured​ ​on​ ​the​ ​pawn.

Mercuna offers dynamic obstacle avoidance to ensure that pawns don’t collide while moving.
Any actor with a MercunaObstacleComponent is automatically considered as an obstacle
that needs to be steered around for the purpose of avoidance. The avoidance algorithm
used by Mercuna is a modified version of ORCA velocity obstacle method that additionally
takes​ ​into​ ​account​ ​the​ ​fixed​ ​level​ ​geometry​ ​stored​ ​in​ ​the​ ​nav​ ​octree.

Blueprint​ ​Functionality
The​ ​following​ ​functions​ ​are​ ​available​ ​on​ ​the​ ​Mercuna​ ​navigation​ ​component​ ​and​ ​can​ ​be
used​ ​to​ ​direct​ ​a​ ​pawn​ ​to​ ​move​ ​between​ ​goals:

● MoveToLocation​​ ​-​ ​move​ ​to​ ​a​ ​position,​ ​stopping​ ​within​ ​end​ ​distance​ ​of​ ​the​ ​goal.
● MoveToActor​​ ​-​ ​move​ ​to​ ​within​ ​a​ ​given​ ​end​ ​distance​ ​of​ ​a​ ​destination​ ​actor,​ ​if​ ​the

destination​ ​moves​ ​while​ ​the​ ​pawn​ ​is​ ​moving,​ ​the​ ​path​ ​will​ ​be​ ​updated​ ​to​ ​track​ ​the
destination.

● TrackActor​​ ​-​ ​get​ ​to​ ​and​ ​stay​ ​within​ ​a​ ​given​ ​distance​ ​of​ ​a​ ​target​ ​actor
● Stop​​ ​-​ ​bring​ ​the​ ​pawn​ ​to​ ​a​ ​complete​ ​stop​ ​as​ ​quickly​ ​as​ ​possible.
● CancelMovement​ ​​-​ ​immediately​ ​terminates​ ​the​ ​pawn’s​ ​current​ ​movement​ ​action
● OnMoveCompleted ​- a delegate that is triggered whenever a movement action is

complete. Returns the result of the movement action as to whether it completed
successfully, failed, was cancelled or was invalid (usually due to an invalid
destination).

● LookAt ​- specify a target actor that the pawn will try to face as it moves. If no look at

target​ ​is​ ​set​ ​then​ ​by​ ​default​ ​the​ ​pawn​ ​faces​ ​in​ ​the​ ​direction​ ​of​ ​movement.
● CancelLookAt​​ ​-​ ​clear​ ​the​ ​look​ ​at​ ​actor.

● CheckReachable​​ ​(Latent​ ​action)​​ ​​-​ ​Test​ ​whether​ ​the​ ​pawn​ ​would​ ​be​ ​able​ ​to​ ​move​ ​to

a​ ​given​ ​destination​ ​position​ ​from​ ​its​ ​current​ ​position.

The​ ​MercunaNavOctree​ ​actor​ ​offers​ ​the​ ​following​ ​Blueprint​ ​functions:

● IsNavigable​ ​​-​ ​Does​ ​a​ ​point​ ​fall​ ​within​ ​navigable​ ​space
● ClampToNavigable​ ​​-​ ​Clamp​ ​a​ ​position​ ​to​ ​the​ ​nearest​ ​point​ ​in​ ​navigable​ ​space
● Raycast​ ​​-​ ​​ ​Perform​ ​a​ ​raycast​ ​through​ ​the​ ​navigable​ ​octree.​ ​If​ ​it​ ​fails,​ ​return​ ​the​ ​first

point​ ​it​ ​hit
● CheckReachable​ ​​-​ ​​ ​Check​ ​whether​ ​there​ ​is​ ​a​ ​path​ ​from​ ​Start​ ​to​ ​End

● FindPathToLocation​ ​​-​ ​Start​ ​an​ ​asynchronous​ ​path​ ​find​ ​from​ ​Start​ ​to​ ​End​ ​positions
● FindPathToActor​ ​​-​ ​Start​ ​an​ ​asynchronous​ ​path​ ​find​ ​from​ ​Start​ ​position​ ​to​ ​End​ ​actor.

Path​ ​will​ ​update​ ​as​ ​the​ ​destination​ ​actor​ ​moves

EQS
Mercuna​ ​currently​ ​offers​ ​three​ ​simple​ ​EQS​ ​tests.​ ​These​ ​tests​ ​are​ ​simple​ ​filters​ ​returning
whether​ ​a​ ​point​ ​passes​ ​or​ ​fails,​ ​and​ ​do​ ​not​ ​score​ ​the​ ​points.​ ​The​ ​available​ ​tests​ ​are:

● Navigable - test whether a point is within the seeded, navigable volume for a pawn
of a given radius. Be aware that the points might be disconnected from the querying
pawn,​ ​however​ ​this​ ​test​ ​is​ ​much​ ​cheaper​ ​than​ ​a​ ​reachability​ ​test.

● Reachable - test whether a point is reachable by a pawn of a given radius from its
position within a specified path distance. If the path distance is set to 0.0, then a
faster​ ​test​ ​is​ ​used​ ​that​ ​only​ ​filters​ ​out​ ​points​ ​with​ ​extremely​ ​long​ ​paths.

● Raycast ​- test whether there is a clear straight line path from the context to the
positions.

Additionally,​ ​Mercuna​ ​offers​ ​one​ ​EQS​ ​test​ ​that​ ​modifies​ ​the​ ​positions​ ​of​ ​the​ ​test​ ​points:

● Project - test whether a point is in or close to navigable space. If the point is outside
then clamp it to back to the closest point within navigable space that is within a given
search radius. The test fails and the point is not moved if the point is further than the
search​ ​radius​ ​from​ ​navigable​ ​space.

Mercuna offers two EQS generators, they simply generate points without considering
whether the resulting points are in navigable space or not. Add the Mercuna Navigable or
Reachable EQS tests to filter out points in navigable regions or inside objects. The two
available​ ​generators​ ​are:

● Sphere ​- generates points in concentric shells either uniformly or randomly
distributed.

● 3D​ ​Ring​​ ​-​ ​generates​ ​points​ ​in​ ​rings​ ​in​ ​multiple​ ​vertical​ ​layers.

BT​ ​Nodes
Mercuna​ ​offers​ ​the​ ​following​ ​Unreal​ ​BT​ ​nodes:

● Reachable​ ​​-​ ​Decorator​ ​-​ ​Test​ ​whether​ ​a​ ​given​ ​point​ ​is​ ​reachable​ ​by​ ​a​ ​particular​ ​actor
● MoveTo ​- Task - Move a pawn with a Mercuna navigation component to a specified

location or actor read from the AI’s blackboard. If the blackboard value is a location
and​ ​the​ ​value​ ​changes​ ​while​ ​the​ ​node​ ​is​ ​running​ ​the​ ​path​ ​will​ ​attempt​ ​to​ ​update.

Debugging​ ​Problems
If you find that your pawn is not moving as expected, or at all, there are several debugging
mechanisms​ ​available​ ​within​ ​Mercuna​ ​to​ ​help​ ​quickly​ ​identify​ ​problems.

Logging
Mercuna makes logs to the Unreal logging system to indicate progress and error conditions.
By default only errors and warnings are logged, but you can easily enable full logging in
order to get more information from the Mercuna menu in the toolbar. When doing full logging
debug information is additionally logged to a dedicated Mercuna.log file, located in the same
directory​ ​as​ ​the​ ​standard​ ​Unreal​ ​logs.

Debug​ ​Actor
When trying to understand the actions of a particular pawn, it can be useful to set it as the
Mercuna debug actor. This can be done by selecting the pawn and setting is as the Mercuna
debug actor in the Mercuna toolbar menu. The same menu also allows the debug actor to
cleared.

On screen log messages will be displayed for the Mercuna debug actor and additional debug
draw​ ​is​ ​available.

Onscreen​ ​logging​ ​and​ ​information​ ​available​ ​about​ ​the​ ​debug​ ​actor

Debug​ ​Draw
In order to help understand the current movement of Mercuna controlled pawns the following
debug​ ​draw​ ​is​ ​available​ ​from​ ​the​ ​Mercuna​ ​editor​ ​menu:

● General​:​ ​Shows​ ​speed​ ​and​ ​velocity​ ​vector​ ​for​ ​all​ ​Mercuna​ ​actors
● Obstacle bounds​: Shows blue spheres representing the dynamic obstacles

registered​ ​with​ ​Mercuna
● Paths​:​ ​Shows​ ​all​ ​paths​ ​currently​ ​being​ ​followed​ ​by​ ​Mercuna​ ​actors
● Steering​:​ ​Shows​ ​the​ ​desired​ ​velocity​ ​vector​ ​for​ ​the​ ​current​ ​debug​ ​actor
● Avoidance​: Shows various pieces of avoidance related debug draw for the current

debug​ ​actor​ ​including​ ​the​ ​velocity​ ​obstacle​ ​cones​ ​and​ ​the​ ​ORCA​ ​planes.

Octree​ ​Debug​ ​Draw
In order to help understand Mercuna’s representation of the geometry for navigation, you
can​ ​draw​ ​the​ ​navigation​ ​octree,​ ​there​ ​are​ ​the​ ​following​ ​modes:

● Unnavigable​:​ ​Draw​ ​the​ ​unnavigable​ ​part​ ​of​ ​the​ ​octree​ ​(in​ ​red).
● Navigable​:​ ​Draw​ ​the​ ​navigable​ ​part​ ​of​ ​the​ ​octree​ ​(in​ ​yellow).
● Navigable​ ​and​ ​unnavigable​:​ ​Draw​ ​both.

If the Mercuna debug actor is set, then the navigation radius of that actor is used to
determine​ ​which​ ​cells​ ​are​ ​treated​ ​as​ ​unnavigable.

There​ ​are​ ​also​ ​options​ ​to​ ​particular​ ​cells​ ​in​ ​the​ ​octree:

● Seeded cells​: This will draw all cells reachable from any nav seed, or if you select a
particular​ ​nav​ ​seed,​ ​it​ ​will​ ​draw​ ​only​ ​the​ ​cells​ ​reachable​ ​from​ ​that​ ​seed.

● Pathfind​: This will give a visualization of the last pathfind through the octree made by
the Mercuna debug actor, or by a Mercuna Nav Testing actor. Explored cells are
shown​ ​in​ ​green,​ ​cells​ ​that​ ​are​ ​on​ ​the​ ​path​ ​are​ ​shown​ ​in​ ​cyan.

● Reachability​: This shows the cells that were included in the last reachability query.
Like the pathfind, it gives a visualization of how the test flooded through the octree
from​ ​the​ ​test​ ​point.

